Sains Malaysiana 54(10)(2025): 2445-2454

http://doi.org/10.17576/jsm-2025-5410-09

 

Fabrication of a Laccase-Immobilised Biosensor Based on Carboxylated
Multi-Walled Carbon Nanotubes for Sensitive Tyramine Detection

(Pembuatan Biosensor Terpegun Lakase Berdasarkan Tiub Nano Karbon Berbilang Dinding Berkarboksilasi untuk Pengesanan Tyramine Sensitif)

 

NURUL SYAZWANI KIZZON1 SYAZA AZHARI 1,* NURUL HANA MAS’OD &
NADRAHTUL HUDA MISRAL
2

 

1Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai,
Negeri Sembilan, Malaysia
2Pusat Tamhidi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

Received: 2 May 2025/Accepted: 5 August 2025

 

Abstract

Tyramine is a molecular substance found in foods that can adversely affect consumers due to its toxicity, posing risks to both human health and food quality. Therefore, it is crucial to monitor the excessive concentration of tyramine in meals. Biosensors have attracted considerable attention from researchers due to their benefits, including portability, ease of use, and high specificity. This study aimed to develop a biosensor by specifically modifying multi-walled carbon nanotubes (MWCNTs) with a carboxyl group (-COOH) to immobilise laccase (Lac) enzyme molecules, thereby enhancing the biosensor’s characteristics, including faster response times, a wider detection range, and higher sensitivity. The modified screen-printed carbon electrode (SPCE) was characterised using differential pulse voltammetry (DPV), Field Emission Scanning Electron Microscopy (FESEM), and Fourier Transform Infrared Spectroscopy (FTIR). The optimised parameters of the Lac-MWCNT-COOH SPCE biosensor exhibited excellent performance at pH 7 in phosphate buffer solution, within the tested pH range of 5.0-9.0, with 3 µL of laccase enzyme (range 1-5 µL), at 0.2 V deposition potential (range 0.1-0.5 V), and a deposition time of 5 s (range 3-7 s). The SPCE modified was successfully fabricated for tyramine determination, achieving a limit of detection (LOD) of 0.09 mM.

 

Keywords: Biogenic amine; biosensor; multi-walled carbon nanotubes; tyramine

 

Abstrak

Tyramine adalah sebatian molekul yang terdapat dalam makanan dan boleh memberi kesan buruk kepada pengguna kerana ketoksikannya, sekali gus memberi kesan negatif kepada kesihatan manusia dan kualiti makanan. Oleh itu, adalah penting untuk memantau kepekatan kandungan tyramine yang berlebihan dalam makanan. Penggunaan biosensor telah menarik minat penyelidik kerana kelebihan seperti kebolehgunaan, kemudahan penggunaan dan keupayaan khusus yang tinggi. Kajian ini bertujuan untuk membangunkan biosensor dengan mengubah suai tiub nano karbon berdinding pelbagai (MWCNT) khusus dengan kumpulan karboksil (-COOH) untuk memegun molekul enzim lakase, sekali gus meningkatkan ciri biosensor seperti masa tindak balas yang lebih cepat, julat pengesanan yang lebih luas dan kepekaan yang lebih tinggi. Ciri dan sifat elektrokimia elektrod karbon cetak skrin (SPCE) yang telah diubah suai telah dikaji menggunakan Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM), Spektroskopi Inframerah Transformasi Fourier (FTIR), voltametri denyut kebezaan (DPV) dan voltametri kitaran (CV). Parameter optimum untuk biosensor Lac-MWCNT-COOH SPCE menunjukkan prestasi yang baik pada pH 7 dalam larutan penampan fosfat (julat 5.0-9.0), dengan 3 µL enzim lakase (julat 1-5 µL), potensi pemendapan 0.2 V (julat 0.1-0.5 V) dan masa pemendapan 5 saat (julat 3-7 saat). Elektrod SPCE yang diubah suai telah berjaya dibangunkan dan direka untuk pengesanan tyramine, menunjukkan had pengesanan (LOD) serendah 0.09 mM.

Kata kunci: Amina biogen; biosensor; tiub nano karbon berdinding pelbagai; tyramine

 

REFERENCES

Datta, S., Veena, R., Samuel, M.S. & Selvarajan, E. 2021. Immobilization of laccases and applications for the detection and remediation of pollutants: A review. Environmental Chemistry Letters 19(1): 521-538.

Debe, M.K. 2011. Effect of electrode surface area distribution on high current density performance of PEM fuel cells. Journal of The Electrochemical Society 159(1): B53-B66. https://doi.org/10.1149/2.032201jes

Erden, P., Erdoğan, Z. & Kılıç, E. 2019. Amperometric biosensors for tyramine determination based on graphene oxide and polyvinylferrocene modified screen-printed electrodes. Electroanalysis 31(12): 2368-2378.

Forouzandeh, P., Kumaravel, V. & Pillai, S.C. 2020. Electrode materials for supercapacitors: A review of recent advances. Catalysts 10(9): 1-73. https://doi.org/10.3390/catal10090969

Fraczek-Szczypta, A., Menaszek, E., Syeda, T.B., Misra, A., Alavijeh, M., Adu, J. & Blazewicz, S. 2012. Effect of MWCNT surface and chemical modification on in vitro cellular response. Journal of Nanoparticle Research 14(10): 1-14. https://doi.org/10.1007/s11051-012-1181-1

Hungerford, J.M. 2010. Scombroid poisoning: A review. Toxicon 56(2): 231-243. https://doi.org/10.1016/j.toxicon.2010.02.006

Kolliopoulos, A.V., Metters, J.P. & Banks, C.E. 2013. Screen printed graphite electrochemical sensors for the voltammetric determination of antimony(iii). Analytical Methods 5(14): 3490-3496. https://doi.org/10.1039/c3ay40683k

Masód, N.H., Azhari, S. & Sathishkumar, P. 2022. Food spoilage: Detection of biogenic amines in food samples by enzyme-based electrochemical biosensors. Malaysian Journal of Chemistry 24(3): 74-87. https://pubchem.ncbi.nlm.nih.gov/

Montes, R., Bartrolí, J., Baeza, M. & Céspedes, F. 2015. Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite composition. Microchemical Journal 119: 66-74. https://doi.org/10.1016/j.microc.2014.11.004

Nandiyanto, A.B.D., Oktiani, R. & Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science & Technology 4(1): 97-118.

Özogul, F., Kuley, E. & Kenar, M. 2011. Effects of rosemary and sage tea extract on biogenic amines formation of sardine (Sardina pilchardus) fillets. International Journal of Food Science and Technology 46(4): 761-766. https://doi.org/10.1111/j.1365-2621.2011.02560.x

Salcedo-Sandoval, L., Ruiz-Capillas, C., Cofrades, S., Triki, M. & Jiménez-Colmenero, F. 2015. Shelf-life of n-3 PUFA enriched frankfurters formulated with a konjac-based oil bulking agent. LWT 62(1): 711-717. https://doi.org/10.1016/j.lwt.2015.01.043

Venton, B.J. & Cao, Q. 2020. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 145(4): 1158-1168. https://doi.org/10.1039/C9AN01586H

Yang, C., Denno, M.E., Pyakurel, P. & Venton, B.J. 2015. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Analytica Chimica Acta 887: 17-37. https://doi.org/10.1016/j.aca.2015.05.049

 

*Corresponding author; email: syaza@usim.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next